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SUMMARY

This paper describes a two-dimensional numerical model to solve the generalized Serre equations. In order
to solve the system of equations, written in the conservative form, we use an explicit finite-difference method
based on the MacCormack time-splitting scheme. The numerical method and the computational model are
validated by comparing one- and two-dimensional numerical solutions with theoretical and experimental
results. Finally, the two-dimensional model (in a horizontal plane) is tested in a domain with complicated
boundary conditions.
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1. INTRODUCTION

The analysis of 1D and 2D unsteady flows by the Saint-Venant equations is very common. These
equations can be solved by several implicit or explicit finite-element and finite-difference methods.
Among the explicit methods, the MacCormack time-splitting scheme''? has been used by
a number of investigators.> ™8

For the analysis of non-linear dispersive waves of Boussinesq equations (water waves with
small relative amplitude propagating in shallow-water conditions), several finite-difference and
finite-element methods have also been used.’ ~'* However, these two types of equations do not
reproduce with accuracy all kinds of waves in shallow-water conditions. In fact, the large-
amplitude waves are well described by the Serre equations,'* as can be seen in Seabra Santos.!®

The numerical solutions of the Serre equations seem to be restricted, until now, to semi-implicit
finite-difference schemes.'®~!8

The aim of this paper is to present a complete explicit finite-difference scheme in order to
obtain the numerical solution of the generalized Serre equations (GSE).

2. FORMULATION

The generalized Serre equations (GSE) are deduced from the fundamental equations of fluid
mechanics applied to a three-dimensional flow. Taking into account (1) the incompressibility of
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the fluid; (2) the almost vertically uniform horizontal components of the velocity field (u, v), i.e.

u=ulx, y,t)+u'(x,y, z,t) and v=ov(x,y, t)+v'(x, ¥, zt),

ju’ dz=Jv’ dz=0,

and considering the usual kinematic and dynamic conditions, the GSE equations are written in
the conservative form, defining the dependent variables Ox=hu and Qy=hu, as follows:'*

h,+(Qx)+(Qy), =0,
(0x),+(u @x)+(v Qx), + {[(g+P)/2+a/3]1h* ) =—(g+ B+2/2) h & —1x(&)+ R div(h grad u),
(1)

with

@)+ Qy)+ (0 Qy), +{[(9+H)/2+0/31h* }y,=—(g+B+o/2)h &~ y(¢)+ R div(h grad v),

where a=d?h/dt?; f=d*¢/dt?, and with the axis and the symbology presented in Figure 1.
The bottom friction terms, tx(&) and ty(&), are approximated by the classical steady-state
Manning -Strickler formula, also written in terms of conservation variables as follows:

0x/[(0x)* +(03)*] Qv QX +(Qy)]
k2 h7,-’3 kZ h7_!3 '

The system of equations (1) constitutes, in accordance with the accepted assumptions, an
adequate model for the study of high-amplitude waves propagating in shallow water. If the effect
of the vertical acceleration of the fluid particles is neglected (x=f=0), we obtain the classical
Saint-Venant equations.!®

x(&)=yg and  1y(¢)=yg

3. NUMERICAL METHOD

Garcia and Kahawita,® solved the Saint-Venant equations using an explicit finite-difference
method based on the MacCormack time-splitting scheme. In a similar way, in order to apply this
method, the GSE (1) are ‘split’ into two systems of three equations throughout the Ox and Oy
directions. The corresponding operators, Lx and Ly, take the following form:

2T Water
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-

Figurc 1. Notations
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Operator Lx
h,+(0x),=0,

g+h

(0x),+(u Ox). + [( 3

+§)h2} =—(g+ﬁ+§)hﬁx—rx(é)+R(Qx)xx, @
(@) +(u 0y)c=R(QY)xx-

Operator Ly

h+(Qy), =0,
(Qx); + (v 0x), = R(Qx),, . 3
Q)+ Qﬁ,ﬂr[(#%) hz] .=—<g+ﬁ+g> h &, —1y(E)+ R(Qy)yy,

Considering the generic variable F, the solution at time (n + 1) At, for the computational point
(i, ), is obtained from the known solution F} ; through the following symmetric application:

A A A At A A A A
s (3o (3) o 2)o (2) (2] 2) (2

where each operator, Lx and Ly, is composed of a predictor—corrector sequence and # represents
a generic time ¢.

In the above application (4) of eight predictor—corrector sequences, alternately backward and
forward space differences arc used, as recommended by MacCormack? and Garcia and
Kahawita,® and which we found totally justified.

The derivative discretization may be performed as follows:

First Lx operator: Predictor—backward differences
Corrector—forward differences

First Ly operator: Predictor—backward differences
Corrector—forward differences
Second Lx operator: Predictor—forward differences
Corrector—backward differences
Second Ly operator: Predictor-—forward differences
Corrector—backward differences
Third Ly operatror: Predictor—backward differences
Corrector—forward differences
Third Lx operator: Predictor—backward differences
Corrector—forward differences
Fourth Ly operator: Predictor—forward differences
Corrector—backward differences

Fourth Lx operator: Predictor—forward differences
Corrector—backward differences

This computation sequence permits removal of most of the directional bias of this scheme, as is
emphasized by Fennema and Chaudhry® for the Saint-Venant equations.
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The first operator Lx of the above application F may be written as follows:

Predictor sequence (backward differences)

At
HE,: H?'j_aA_x [(Qx)?,j"(Qx)?— 1,j],

Q
(QX)f'j'—’(QX)?,j 412 (D2;,—D{_y j)— At (gl—ljz—-l_gu)(éi,j“fi—hj)
S0 s U@ = 2000+ @) ©

RLU@YE-1,;=2 Q)2 +(Q0)P1.5]-

A At
(@2, =@N8= jae B ER 1)+ g3

Corrector sequence ( forward differences)

Hm=1{H& Y @021

2
A GP . +G
(Qx)?,j=%{(Qx)2j+(QX)}’,j (Dx+1 D )*‘t(——%ﬁ—)(fiﬂ,j—fu)
At R 2 6)
-4 )7+ 4(A (b [Qx)F_, ;=207 +(@x)P,, ;1 (

Y o At
(Qy)zj {(Qy)lj (Qy)i,j—'m E;+1 W E ) (A )2 R[(Qy)L 1,j 2(Qy) +(Qy),+1 J]}

with D=u Qx+[(g+p)/2+a/31h* E=uQy, G=(g+f+«/2) h and H=h,

After each predictor and each corrector of the application F the values of the velocities (u, v) are
updated and the values of the vertical accelerations, « and f, are recalculated.

For computation of the vertical accelerations, the following schemes are used:

. d2h n },in+l/2__},ir£—l/2
* =(?) T a 0
dzf n £n+1/2_5g—1/2
p =<3?5) - At ’

with

2 @ n”/z:hnﬂ—h'ﬁ
dt At O’

invisz g nt1/2 Vn+1 fn
¢ S \dt A

The intermediate variables k3, &3, h3™ '/ and 3~ "/2 have the following expressions:
h'é:h"—At un+1/2 h:+ 1/2—AI vn+1/2 h;+1/2 ,

éri___én_At un+1/2 £;+ I/Z—At vn+ 1/2 §;+1/2 ,
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R~ Y2 = p" Y2 At ut(B"), — At 0" (R"),,
,f'ri— 1/2 =£n—1/2_At u"(f")x—At vn(én)y’

with
hn__hn~1
ﬁn—1/2= +un—l/2 h;—1/2+vn—-112 hn—1/2 ,
At Y

. f"—f"—l
-1/2 _ -1/2 -1/2 ~1/2 -1/2
E" / ——At-—+u" / & +" é; .

These expressions are also ‘split” throughout the Ox and Oy directions in order to apply
a numerical procedure based on the MacCormack scheme.

As can be seen, substituting the intermediate variable expressions in the above numerical
schemes, the o" and " values are approximated by

hn+1_hn hn_hn—l

. At At +un+1/2 h'n+1/2_un—1/2 Hn—1/2+vn+l/2 h'n+ 12 __p-1i2 }in—l/2
o =
At At At
+u" (") + 0" (B"),,
£n+1_£n 5n_€n—1
ﬂ"— At - At +un+ 1/2 én+1/2_un—1/2 én—l/2+vn+1/2 £n+1/2_vn~1/2 En—l/Z
B At At At
+ " (0" (E"),,

with ) ) )
hn =(h"_ 1/2 + hn+ 1/2)/2,

Er=(&rm12 4 01,

Finally, it is important to note that the required intermediate variables at times (n+ 1) At are
approximated from the last predictor or corrector sequence calculated values h, u and v.

4. BOUNDARY CONDITIONS

The MacCormack scheme is not able to compute all the variables values in the points located at
the boundaries of the domain. This problem was solved with recourse to the characteristics
method in the predictor sequence; in the corrector sequence the derivatives discretization was
reversed, when needed.

If the vertical accelerations, « and 8, and the diffusion term R(Qx),, are ignored in (2), we
obtain the well-known Saint-Venant equations:

h+hu,+uh, =0,

N L
who+hu+(hu) + 5 =—ghl,—~ghlJ,
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which allows us to obtain,
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d

X
a?=ui\/(gh)7

duz./(g/h) dh+g( &+ J) de=0.

Integrating these equations, taking into account the symbology presented in Figure 2, we
obtain the following equations for the characteristics lines:

Characteristic C~ <

Characteristic C* ]

1 H,—H, Te $o—4&c
U,=Us+g—= ——<—+g At,
X, —
Cq H, b—Xe¢ (10)
X,—X,=(Us—CyAt,
( H "He Te éc_éa
e (5, S0,
¢ \H XX, o
X,—X.=(U.+C.)At,
L

The parameters Uy, U,, Cq4, C., Hy and H, presented in equations (10) and (11) have the

following expressions, obtained by linear interpolation:*°

with §=At/Ax.

_ U.~6[U,lg Hy)'"*~Un(g H,)'"]
1-6{U.—Uy—(g Ho)'"* +(g Hy)'"*Y’

_ Uc+0[Ua(g HC)UZ_ Uc(g Ha)1/2]
6_1 +H[U0_Ua+(g Hc)l/z_(g Ha)l/zj ’

o 9 HY+ Ua0l(g H)'” —(g Hy)'™]
T 1400 H)Y? —(g Hy)'?] ’

(g H)'>+ U 0[(g H)'? ~(g H,)'”]
6L(g H,)'*—(g He)'?]—1

Hd=Hc+9(Ud—cd)(Hc_Hb)’
HezHc—O(Hc—Ha)(Ue+Ce)a

Ug

Co=—

p —
1
At ct c-
T a e c d b T
l[—Ax—l

Figure 2. Local characteristic lines for subcritical flow

oL
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Equations (10) and (11) make it possible to compute explicitly the values of the flow depth #, at
time (n+ 1) At, in the first and the last points of the mesh (when needed), respectively, along the Ox
direction.

Similar computations are made, starting from the system of equations (3) along the Oy
direction.

The radiation condition substitutes the conservation of momentum equations when backward
differences are required for the first points of the mesh, or when forward differences are required
for the last points of the mesh, throughout the Ox and Oy directions.

This condition takes the forms

+(1—7) 5 C cos ¢ =h u along the Ox direction,

.. 13
+(1—v)n Csin ¢=h v along the Oy direction, (13)

where 7 is a reflection coefficient; 4 is the surface elevation; C= \/ gh is the wave celerity; ¢ is the
angle which defines the direction of the wave propagation, related to the Ox direction.
We take the sign + or — according to the inflow or outflow boundary condition.

5. STABILITY CONDITIONS

The stability of an explicit finite-difference scheme is normally determined by the
Courant-Friedrich-Lewy condition, that is,

Cr Ax Cr Ay
(#+ Chmax " (04 Cmax |

where Cr is the maximum Courant number that guarantees stable results. In the MacCormack
scheme this is satisfied with Cr=1 for each set of operators.! ~* However, comparisons of
theoretical solutions with the one-dimensional results allow us to conclude that the global
propagation Courant numbers of the proposed scheme must be under 3; moreover, the better
global Courant number is of the order of 2. This means that the model presented can be used with
Courant numbers between 0-50 and 0-75 for each set of operators.

The spatial discretization itself quite obviously has certain effects upon the quality of the
solution. The better results were obtained with Ax and Ay in the same order of 0-9 h to h, where
h is the mean depth in the corresponding Ax or Ay interval.

AtSmax[ 14

6. COMPUTATIONAL TESTS

6.1. Solitary waves

In order to validate the proposed numerical method, some experiments were performed and
compared with known analytical solutions.

Two of these experiments are shown in Figures 3 and 4. Both the cases represent a solitary
wave travelling along a horizontal no-friction rectangular channel 2000 m long. The analytical
solution of this problem is

) 3/4 1/2 A 1/2
h=h0+SBCh {[MJ l:x—[gho (1+il'0>:| t+x0]},
~ A\ T2 ho

oo on(14) |7 (=%)

(1)
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t= 0.00 s

- [/
72 N t=125.23| s

! [ ]
«0 m S00e0 m 1000.0 m 15000 m 2000.

Analytical solution
_____ Numerical results

Figure 3. Propagation of a solitary wave with A/h;=0-25; h =10 m; horizontal bottom

t= 0a.00 s

| | | !
a0 m S500.0 m 10000 m 1500.0 m 2000.
Analytical solullon

_____ Numerlcal resulls

Figure 4. Propagation of a solitary wave with A/hy=0-50; hy =10 m; horizontal bottom

where A is the wave amplitude, h, =10 m is the undisturbed water depth for t =0, and x, =200 m

is the initial position of the crest.

The results shown in Figure 3 are for a wave with A4/h,=0-25, while Figure 4 shows the
comparison with A/h,=0-50. Both experiments were computed with a spatial grid Ax=10 m.
The time increment At and the central processing unit (CPU) time required on a 8530 VAX
computer were 1:74 s and 1-42 min for the first and 1-47 s and 1-49 min for the second experiment,

respectively.

In both experiments the phase accuracy is very good; the amplitude of the wave decays of about
6-8% and the resulting loss of energy is responsible for the generation of a small numerical

dispersive wave.
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6.2. Sudden releases (dam-break experiments)

A set of data measurements is available, developed in the Hydraulic Laboratory of the
Department of Civil Engineering of the University of Coimbra, for comparative analyses of the
numerical scheme. A 7-50 m long by 0-30 m wide horizontal rectangular channel was used, with
the dam located in the middle of the channel (x = 3-85 m). The dam failed ‘instantaneously’ (in our
experiments it is simulated by a glass sluice gate, which is operated by compressed air and opened
in a very short time, about half a second). Four depth gauges were used, located at 2-65, 525, 625
and 7-25 m from the initial section of the channel, respectively.

Numerical resulls

...... Experimental dala

Figure 5. Sudden releases: ratio of the channel water-to-reservoir, h_/h =0-587

== Gouge 1

N ! { |
«0 sec 1¢0 sec 2a0 seac 3.0 sec 4a0 sec Sea

Numerlcal resulls
______ Experimental data

Figure 6. Sudden releases: ratio of the channel water-to-reservoir, h /h, =015
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Flow conditions were analysed for different ratios of the tailwater-to-reservoir depths (h./h,).
Only results for the ratios h_/h,=0-587 (Figure 5) and h./h,=0-515 (Figure 6) are included here.
Figure 5 shows results for the numerical amplitude and phase accuracy of the first wave very
close to the experimental data. Despite important remaining waves out of phase, the correspond-

ing amplitudes agreed reasonably with the experimental data.

It is important to emphasize that the results shown in Figure 6 were obtained with the initial
conditions h,=0-051 m and h,=0-099 m. This means that the ratio of maximum amplitude to
water depth &= A/h,~0:94 exceeds the stability limits of the solitary wave; however, even in this
case, the numerical amplitudes of the waves are in good accordance with the experimental data,
excluding the first wave, which breaks.

These results were obtained with a Ax =0-044 m spacing grid and a time increment At =0083 s
for the first experiment; the results shown in Figure 6 were obtained with Ax=0-050 m and

At=010s.

e —

28.m

T

WAVES GENERATOR

14m

PR

CIA. 147 m

BEACH GRAVEL

SLOPE 1:15

CHANNEL

Figure 7. Physical model plan and installed depth gauges for a solitary wave overpassing an island

4 INITIAL POSITION OF THE CREST WAVE
» INSTALLED DEFTH GAUGES
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6.3. Solitary wave overpassing an island

The third application relates to a solitary wave propagation overpassing an island, whose
boundaries are assumed to be vertical and totally reflective.

Figure 7 shows the physical model plan, including the positions of the installed depth gauges,
conceived and realized by Temperville and Mansard.?*

Figure 8 shows four surfaces of water computed at times t; =2'35s,1,=4-70s, t;=7-05s and
t;=940s, and some comparisons between the numerical and experimental results are shown in
Figure 9.

6.4. Port of Figueira da Fo:

In order to test this model in a concrete case, the agitation established from a state of rest was
calculated under a sinusoidal wave boundary condition, namely, with a period T=17-5 s, wave
length L=173 m, amplitude A=470 m in the open sea and direction ®=260° W.

The port of Figueira da Foz is protected by means of two roughed breakwaters, which are
bordering greatly the outer harbour; a channel bordered almost exclusively by smooth inclined
walls establish the liaison into the inner port, where the commercial quay is situated (Figure 10).

The port is 2250 m long and 400 m wide, approximately. Its average depth is of the order of
7 m, with approximately 12 m throughout the outer port basin.

The domain was modelled using an irregular spacing rectangular grid, with about 27000
discrete points.

Figure 11 shows a perspective view of the surface computed in the basin 301 s after excitation.

As can be seen, a zone with stronger agitation is observed, under these conditions, in the centre
of the outer harbour.

t=235s t=4.70s

Figure 8. Three-dimensional perspective view of free-surface elevation for a solitary wave overpassing an island, in time
sequence
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Figure 9. Comparison between numerical and experimental results for a solitary wave overpassing an island
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Figure 10. Base map of the port of Figueira da Foz
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Figure 11. Port of Figueira da Foz. Perspective view of the surface computed 301 s after excitation

It is important to remark that this figure is the final result after adjusting the reflection
coeflicients in the breakwaters and channel walls in order to obtain in the port basin the agitation
quite comparable to that observed under the same conditions.

7. CONCLUSIONS

A full explicit finite-difference method based on the MacCormack time-splitting scheme is
developed in order to solve the generalized Serre equations.

Solitary waves of two amplitudes are propagated and compared with the analytical solution.

Dam-break experiments, with ratios h./h.>0-515, are simulated and compared with laborat-
ory-scale results.

In order to show the performances of the developed model in three-dimensional ‘real-world’
problems, two experiments are presented. The first consisted of a solitary wave overpassing an
island and the second experiment is a concrete investigated case concerning the simulation of the
agitation in the port of Figueira da Foz—Portugal.

The results obtained allow us to conclude that the model can be employed in any geometry,
under complicated boundary conditions.

ACKNOWLEDGEMENTS

The authors express their appreciation to J. Lopes de Almeida (FCTUC) for the bathymetric data
used in Figure 11 and his collaboration in generating three-dimensional perspective views.

REFERENCES

1. R. W. MacCormack, ‘The effect of viscosity in hypervelocity impact cratering’, Paper 69-354, American Institute of
Aeronautics and Astronautics, Cincinnati, Ohio, 1969.

2. R. W. MacCormack, ‘Numerical solution of the interaction of a shock wave with a laminar boundary layer’, Lecture
Notes in Physics, Vol. 8, Springer, Berlin 1971, pp. 151-163.

3. R. Garcia and R. A. Kahawita, ‘Numerical solution of the Saint-Venant equations with the MacCormack finite-
difference scheme’, Int. j. numer. methods fluids, 6, 259-274 (1986).

4. C. V. Bellos and J. G. Sakkas, ‘1D dam-break flood-wave propagation on dry bed’, J. Hydraul. Eng., 113, 15101524
(1987).

5. R.J. Fennema and M. H. Chaudhry, “Explicit numerical schemes for unsteady free-surface flows with shocks’, Water
Resources Res., 22, 1923-1930 (1986).

6. R. J. Fennema and M. H. Chaudhry, ‘Explicit methods for 2D transient free-surface flows’, J. Hydraul. Eng., 116,
1013-1034 (1990).

7. A. B. Franco, ‘Simulagdo numérica de cheias provocadas por roturas de barragens’, Tese de Mestrado em Hidraulica
e Recursos Hidricos do IST, Lisboa, Portugal, 1989.

8. J. 8. Antunes do Carmo, ‘Efeitos hidrodinidmicos resultantes de deslizamentos de encostas em albufeiras—Modelagdo
a duas dimensdes horizontais’, Tese de Mestrado em Hidrailica e Recursos Hidricos do IST, Lisboa, Portugal, 1990.



738 I. S. ANTUNES DO CARMO, F. J. SEABRA SANTOS AND A. B. ALMEIDA

16.
17.
18.

19.
20.

21

. D. H. Peregrine, ‘Calculations of the development of an undular bore’, J. Fluid Mech., 25, 321-330 (1966).

. D. H. Peregrine, ‘Long waves on a beach’, J. Fluid Mech., 27, 815-827 (1967).

. G. Pedersen and B. Gjevik, ‘Run-up of solitary waves’, J. Fluid Mech., 135, 183-299 (1983).

. N. D. Katopodes and Chien-Tay Wu, ‘Computation of finite-amplitude dispersive waves’, J. Waterway, Port, Coastal
and Ocean Eng., 113, 327-346 (1987).

. D. R. Basco, ‘Limitations of the Saint-Venant equations in dam-break analysis’, J. Hydraul. Eng., 115, 950-965 (1989).

. F. Serre, ‘Contribution 4 ’étude des écoulements permanents et variables dans les canaux’, La Houille Blanche, 1953,
pp. 374-388.

. F. J. Seabra Santos, D. P. Renounard and A. M. Temperville, ‘Etude théorique et expérimentale des domaines de

validité des théories d’évolution des ondes en eau peu profonde’, Annales Geophysicae, 6, 671-680 (1988).

A. Hauguel, ‘Calcul des houles de tempétes en eau peu profonde; application a I'agitation dans les ports’, Rapport

interne EDF-—Chatou, France, 1979.

J. P. Benqué, A. Hauguel and P. L. Viollet, Engineering Applications of Computational Hydraulics, Vol. IL, Pitman,

London, 1982,

F. J. Seabra Santos, ‘Contribution a I'étude des ondes de gravité bidimensionnelles en eau pen profonde’, Université

Scientifique et Médicale et Institut National Polytechnique de Grenoble-France, 1985.

Saint-Venant, C.R. Acad. Sci., 83, 147, 237 (1871).

A. B. Almeida, ‘Introdugio ao estudo dos escoamentos variaveis em superficie livre (modelagdo matematica)’, IST,

Lisboa, Portugal, 1983.

. A. Temperville and E. Mansard, Internal Report, CNRC Ottawa, Canada, 1988.



