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SUMMARY 

This paper describes a two-dimensional numerical model to solve the generalized Serre equations. --i order 
to solve the system of equations, written in the conservative form, we use an explicit finite-difference method 
based on the MacCormack time-splitting scheme. The numerical method and the computational model are 
validated by comparing one- and two-dimensional numerical solutions with theoretical and experimental 
results. Finally, the two-dimensional model (in a horizontal plane) is tested in a domain with complicated 
boundary conditions. 
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1 .  INTRODUCTION 

The analysis of 1D and 2D unsteady flows by the Saint-Venant equations is very common. These 
equations can be solved by several implicit or explicit finite-element and finite-difference methods. 
Among the explicit methods, the MacCormack time-splitting scheme132 has been used by 
a number of  investigator^.^-^ 

For the analysis of non-linear dispersive waves of Boussinesq equations (water waves with 
small relative amplitude propagating in shallow-water conditions), several finite-difference and 
finite-element methods have also been used.’- l 3  However, these two types of equations do not 
reproduce with accuracy all kinds of waves in shallow-water conditions. In fact, the large- 
amplitude waves are well described by the Serre  equation^,'^ as Lan be seen in Seabra Santos.” 

The numerical solutions of the Serre equations seem to be restricted, until now, to  semi-implicit 
finite-difference schemes.16- 

The aim of this paper is to present a complete explicit finite-difference scheme in order to 
obtain the numerical solution of the generalized Serre equations (GSE). 

2. FORMULATION 

The generalized Serre equations (GSE) are deduced from the fundamental equations of fluid 
mechanics applied to a three-dimensional flow. Taking into account (1) the incompressibility of 
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the fluid; (2) the almost vertically uniform horizontal components of the velocity field (u, v), i.e. 

u=U(x,y,  t)+u'(x,y, z ,  t )  and v=;(x,y, f)+u'(x,y,z,  t), 

with 

U' dz = U' dz = 0, I ? '  
and considering the usual kinematic and dynamic conditions, the GSE equations are written in 
the conservative form, defining the dependent variables Qx = h u and Q y  = h u, as f01lows:'~ 

ht+(Qx)x+(Qy),=O, 

(Qx), +(u Qx), + ( U  Qx), + { C(g + P) /2  + 4 3 1  h2 )x =-(9 + P+ ~ / 2 )  h tX -=(O + R  div(h grad 4, 

(Qyh + (u QyL + (0 Q Y ) ~  + { C(s + B ) P  + 4 1  h Z  ly = - (9 + P + 4 4  h 5, - zy ( 5 )  + R div(h grad a), 

(1) 

where cc=d2h/dt2; P=d2</d t2 ,  and with the axis and the symbology presented in Figure 1. 

Manning -Strickler formula, also written in terms of conservation variables as follows: 
The bottom friction terms, zx(<) and ty((), are approximated by the classical steady-state 

The system of equations (1) constitutes, in accordance with the accepted assumptions, an 
adequate model for the study of high-amplitude waves propagating in shallow water. If the effect 
of the vertical acceleration of the fluid particles is neglected (a = = 0), we obtain the classical 
Saint-Venant equations." 

3. NUMERICAL METHOD 

Garcia and K a h a ~ i t a , ~  solved the Saint-Venant equations using an explicit finite-difference 
method based on the MacCormack time-splitting scheme. In a similar way, in order to  apply this 
method, the GSE (1) are 'split' into two systems of three equations throughout the Ox and Oy 
directions. The corresponding operators, Lx and Ly, take the following form: 

Water =T 

X 

Figurc 1 .  Notations 
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Operator Lx 

Operator Ly 

Considering the generic variable F ,  the solution at time (n + 1 )  At, for the computational point 
(i, j ), is obtained from the known solution F 2  through the following symmetric application: 

where each operator, Lx and Ly, is composed of a predictor-corrector sequence and IZ represents 
a generic time t .  

In the above application (4) of eight predictor-corrector sequences, alternately backward and 
forward space differences arc used, as recommended by MacCormack’ and Garcia and 
K a h a ~ i t a , ~  and which we found totally justified. 

The derivative discretization may be performed as follows: 

First Lx operator: 

First Ly operator: 

Second Lx operator: 

Second Ly  operator: 

Third Ly operatror: 

Third Lx operator: 

Fourth Ly operator: 

Fourth Lx operator: 

Predictor-backward differences 
Corrector-forward differences 
Predictor-backward differences 
Corrector-forward differences 
Predictor-forward differences 
Corrector-backward differences 
Predictor--forward differences 
Corrector-backward differences 
Predictor-backward differences 
Corrector-forward differences 
Predictor-backward differences 
Corrector--forward differences 
Predictor-forward differences 
Corrector-backward differences 
Predictor-forward differences 
Corrector-backward differences 

This computation sequence permits removal of most of the directional bias of this scheme, as is 
emphasized by Fennema and Chaudhry6 for the Saint-Venant equations. 
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The first operator Lx of the above application F may be written as follows: 

Predictor sequence (backward differences) 

Corrector sequence (forward differences) 

At At G; J .+G;+,,j 
(Q.x)&+(Qx),qj-- 4Ax (Dy+ I , j - D p  ' 3 J  .)-- ~ A X  ( ) ( t i * l , j - t i , j )  

with D = u Q x + [ ( g + / ? ) / 2 t a / 3 ] h 2 ,  E = u Q y ,  G=(g+p+a/2 )h  and H = h .  

updated and the values of the vertical accelerations, a and b, are recalculated. 
After each predictor and each corrector of the application F the values of the velocities (u, u )  are 

For computation of the vertical accelerations, the following schemes are used: 

with 
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with 

These exp ssi ns are also 'split' throughout the Ox and Oy directions in order to apply 

As can be seen, substituting the intermediate variable expressions in the above numerical 
a numerical procedure based on the MacCormack scheme. 

schemes, the u" and /I" values are approximated by 

with 

Finally, it is important to note that the required intermediate variables at times (n + 1) At are 
approximated from the last predictor or corrector sequence calculated values h, u and v .  

4. BOUNDARY CONDITIONS 

The MacCormack scheme is not able to compute all the variables values in the points located at 
the boundaries of the domain. This problem was solved with recourse to the characteristics 
method in the predictor sequence; in the corrector sequence the derivatives discretization was 
reversed, when needed. 

If the vertical accelerations, a and b, and the diffusion term R(Qx) ,  are ignored in (2), we 
obtain the well-known Saint-Venant equations: 

h,+ h u, + u hx = 0, 

u h,+h u,+(h U Z L + ( g )  =-g h <,-g h J ,  
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which allows us to obtain, 

dx 
- dt = u f J(gh), 

du+J(g/h) dh+g( <,+J) dt=O. 

Integrating these equations, taking into account the symbology presented in Figure 2, we 
obtain the following equations for the characteristics lines: 

up= ud+g  ___- -+g Tc ---) [ b - t c  At, 
H, XI,-~, Characteristic C- 

-+g-- ) At, 
Hc Xc-Xa 

up=ue-g-- 
Ce Characteristic C +  

Xp - X ,  =( U ,  + C,) At, 

The parameters ud, U, ,  c d ,  C,, Hd and H e  presented in equations (10) and (11) have the 
following expressions, obtained by linear interpolation:20 

with 0 = At/dx. 

I 
I -+ 

X 

Figure 2. Local characteristic lines for subcritical flow 
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Equations (10) and (1 1) make it possible to compute explicitly the values of the flow depth h, at 
time (n + 1) At, in the first and the last points of the mesh (when needed), respectively, along the Ox 
direction. 

Similar computations are made, starting from the system of equations (3) along the Oy 
direction. 

The radiation condition substitutes the conservation of momentum equations when backward 
differences are required for the first points of the mesh, or when forward differences are required 
for the last points of the mesh, throughout the Ox and Oy directions. 

This condition takes the forms 

(1 - y) 9 C cos y = h u along the Ox direction, 

f (1 - y) 4 C sin y = h 2j along the Oy direction, (1 3 )  

where y is a reflection coefficient; 11 is the surface elevation; C = J g h  is the wave celerity; cp is the 
angle which defines the direction of the wave propagation, related to the Ox direction. 

We take the sign + or - according to the inflow or outflow boundary condition. 

5. STABILITY CONDITIONS 

The stability of an explicit finite-difference scheme is normally determined by the 
Courant-Friedrich-Lewy condition, that is, 

where Cr is the maximum Courant number that guarantees stable results. In the MacCormack 
scheme this is satisfied with Cr=l  for each set of However, comparisons of 
theoretical solutions with the one-dimensional results allow us to conclude that the global 
propagation Courant numbers of the proposed scheme must be under 3; moreover, the better 
global Courant number is of the order of 2. This means that the model presented can be used with 
Courant numbers between 0.50 and 0.75 for each set of operators. 

The spatial discretization itself quite obviously has certain effects upon the quality of the 
- solution. The better results were obtained with Ax and Ay in the same order of 0-9 % to h, where 
h is the mean depth in the corresponding Ax or Ay interval. 

6. COMPUTATIONAL TESTS 

6.1. Solitary waves 

In order to validate the proposed numerical method, some experiments were performed and 
compared with known analytical solutions. 

Two of these experiments are shown in Figures 3 and 4. Both the cases represent a solitary 
wave travelling along a horizontal no-friction rectangular channel 2000 m long. The analytical 
solution of this problem is 

u = [ &  (1 +;)]1’2 (1 +), 
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I =  0.00 s 

t=125.23 t 
I 

.O m 500.0 m 1000.0 m 1500.0 m 2000. 

__ A n a l y t i c a l  s o l u t i o n  
Numerical r e s u l t s  

Figure 3. Propagation of a solitary wave with A/h,=0.25; h,=lOrn;  horizontal bottom 

S 

_ - .  - -  * - 
I - _ - -  I I I - =  - 

-0 m 500.0 m 1000.0 m 1500.0 m 2000. 

__ A n a l y t  l c o l  s o l u t  ton 
N u m e r I r a l  r e s u l t s  

Figure 4. Propagation of a solitary wave with A/h, =0.50; h, = 10 rn; horizontal bottom 

where A is the wave amplitude, ho = 10 m is the undisturbed water depth for t =0, and xo = 200 m 
is the initial position of the crest. 

The results shown in Figure 3 are for a wave with A/ho=0.25, while Figure 4 shows the 
comparison with A/h, = 0.50. Both experiments were computed with a spatial grid Ax = 10 m. 
The time increment At  and the central processing unit (CPU) time required on a 8530 VAX 
computer were 1.74 s and 1.42 min for the first and 1-47 s and 1.49 min for the second experiment, 
respectively. 

In both experiments the phase accuracy is very good; the amplitude of the wave decays of about 
6-8% and the resulting loss of energy is responsible for the generation of a small numerical 
dispersive wave. 
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6.2. Sudden releases (dam-break experiments) 

A set of data measurements is available, developed in the Hydraulic Laboratory of the 
Department of Civil Engineering of the University of C o i ~ b r a ,  for comparative analyses of the 
numerical scheme. A 7.50 m long by 0.30 m wide horizontal rectangular channel was used, with 
the dam located in the middle of the channel (x = 3.85 m). The dam failed ‘instantaneously’ (in our 
experiments it is simulated by a glass sluice gate, which is operated by compressed air and opened 
in a very short time, about half a second). Four depth gauges were used, located at 2.65 ,525 ,6 .25  
and 7-25 m from the initial section of the channel, respectively. 

- 
Gauge 1 

I I I I I I 
-0 S8.C 1.0 s e e  2.0 S Q C  3.0 sec c.0 s e c  5. 

-- N u m e r i c a l  r e s u l l s  

_ _ _ _ _  E x p e r i m e n t a l  dala 

Figure 5. Sudden releases: ratio of the channel water-to-reservoir, hJhr = 0,587 

I 1 I I I I 
.O s e r  1.0 s e c  2.0 s e e  3.0 sec L-0  t e r  5. 

___ N m e r I r a l  tesulIs 

E r ~ e r I m e n t a l  data 

Figure 6. Sudden releases: ratio of the channel water-to-reservoir, h,/h, = O m  
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Flow conditions were analysed for different ratios of the tailwater-to-reservoir depths (hc/hr) .  
Only results for the ratios hc/h, =0.587 (Figure 5) and h,/h,=0.515 (Figure 6)  are included here. 

Figure 5 shows results for the numerical amplitude and phase accuracy of the first wave very 
close to the experimental data. Despite important remaining waves out of phase, the correspond- 
ing amplitudes agreed reasonably with the experimental data. 

It is important to emphasize that the results shown in Figure 6 were obtained with the initial 
conditions h,=0-051 m and h,=0.099 m. This means that the ratio of maximum amplitude to 
water depth E = A/hc ~ 0 . 9 4  exceeds the stability limits of the solitary wave; however, even in this 
case, the numerical amplitudes of the waves are in good accordance with the experimental data, 
excluding the first wave, which breaks. 

These results were obtained with a Ax = 0.044 m spacing grid and a time increment At = 0.083 s 
for the first experiment; the results shown in Figure 6 were obtained with Ax=0.050 m and 
At=0.10 S. 

I 
E 

I 
I 

I 
. .L 

I 
E - 

WAVES GENERATOR 

.__.__ ~ 

t 

\DlA 1 4 7 "  

BEACH GRAVEL 

SLOPE1 1'1 

Figure 7. Physical model plan and installed depth gauges for a solitary wave overpassing an island 
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6.3. Solitary wave overpassing an island 

The third application relates to a solitary wave propagation overpassing an island, whose 
boundaries are assumed to be vertical and totally reflective. 

Figure 7 shows the physical model plan, including the positions of the installed depth gauges, 
conceived and realized by Temperville and Mansard.' 

Figure 8 shows four surfaces of water computed at times t l  = 2.35 s, t 2  = 4.70 s, t3 = 7-05 s and 
t4 = 9.40 s, and some comparisons between the numerical and experimental results are shown in 
Figure 9. 

6.4. Port of Figueira da Foi 

In order to test this model in a concrete case, the agitation established from a state of rest was 
calculated under a sinusoidal wave boundary condition, namely, with a period T= 17.5 s, wave 
length L =  173 m, amplitude A=4.70 m in the open sea and direction @=260" W. 

The port of Figueira da Foz is protected by means of two roughed breakwaters, which are 
bordering greatly the outer harbour; a channel bordered almost exclusively by smooth inclined 
walls establish the liaison into the inner port, where the commercial quay is situated (Figure 10). 

The port is 2250 m long and 400 m wide, approximately. Its average depth is of the order of 
7 m, with approximately 12 m throughout the outer port basin. 

The domain was modelled using an irregular spacing rectangular grid, with about 27000 
discrete points. 

Figure 11 shows a perspective view of the surface computed in the basin 301 s after excitation. 
As can be seen, a zone with stronger agitation is observed, under these conditions, in the centre 

of the outer harbour. 

t = 2.35 s t = 4.70 8 

Figure 8. Three-dimensional perspective view of frce-surface elevation for a solitary wave overpassing an island, in time 
sequence 
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-0 a 1.0 s 2.0 a 3.0 t L.0 f 5.0 . 6.0 s 7.0 f 0.0 * 9.0 

hU(. 4 

I I I I I I I I I I 

.o a 1.0 a 2.0 s 3.0 a 6.0 a 5.0 a 6.0 s 7.0  I 8.0 a 3.0 

Figure 9. Comparison between numerical and experimental results for a solitary wave overpassing an island 

Figure 10. Base map of the port of Figueira da Foz 
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Figure 11. Port of Figueira da Foz. Perspective view of the surface computed 301 s after excitation 

It is important to remark that this figure is the final result after adjusting the reflection 
coefficients in the breakwaters and channel walls in order to obtain in the port basin the agitation 
quite comparable to that observed under the same conditions. 

7. CONCLUSIONS 

A full explicit finite-difference method based on the MacCormack time-splitting scheme is 
developed in order to solve the generalized Serre equations. 

Solitary waves of two amplitudes are propagated and compared with the analytical solution. 
Dam-break experiments, with ratios h,/h,> 0.51 5, are simulated and compared with laborat- 

ory-scale results. 
In order to show the performances of the developed model in three-dimensional ‘real-world 

problems, two experiments are presented. The first consisted of a solitary wave overpassing an 
island and the second experiment is a concrete investigated case concerning the simulation of the 
agitation in the port of Figueira da Foz-Portugal. 

The results obtained allow us to conclude that the model can be employed in any geometry, 
under complicated boundary conditions. 
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